Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-amino-4-methyl-1,3-thiazole- κN^{3})dichloridocadmium(II)

Lai-Jun Zhang, ${ }^{\text {a,b }}{ }^{\text {* }}$ Xing-Can Shen ${ }^{\text {b }}$ and Hong Liang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Shangrao Normal University, Shangrao 334001, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of Medicinal Chemical Resources and Molecular Engineering, Department of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China Correspondence e-mail: Ijzhang@sru.jx.cn

Received 16 August 2008; accepted 31 August 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$; R factor $=0.028 ; w R$ factor $=0.064 ;$ data-to-parameter ratio $=16.6$.

In the title compound, $\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$, the $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by two chlorido ligands and two N atoms of the 2-amino-5-methyl-1,3-thiazole (amtz) ligands in a slightly distorted tetrahedral coordination geometry. Intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding stabilizes the crystal structure. A weak $\mathrm{S} \cdots \mathrm{Cl}$ interaction $[3.533(2) \AA$] is observed between neighboring molecules.

Related literature

For general background, see: Bolos et al. (1999); Miodragović et al. (2006); Cini et al. (2007); Dea et al. (2008); Shen et al. (2008). For a related structure, see: Cai et al. (2008).

Experimental

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=411.67$
Monoclinic, $P 2_{1} / n$
$a=8.7100$ (17) \AA
$b=13.190$ (3) \AA
$c=12.740$ (3) \AA
$V=1457.6(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.40 \times 0.25 \times 0.23 \mathrm{~mm}$
$\beta=95.19$ (3) ${ }^{\circ}$
Data collection
Bruker APEXII CCD area-detector diffractometer

7630 measured reflections 2595 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.064$
$S=0.98$
2595 reflections

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{Cd} 1-\mathrm{N} 2$	$2.246(3)$	$\mathrm{Cd} 1-\mathrm{Cl} 1$	$2.4181(10)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.248(3)$	$\mathrm{Cd} 1-\mathrm{Cl} 2$	$2.4387(11)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 1$	$99.70(11)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{Cl} 2$	$114.38(8)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$	$106.53(8)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 2$	$107.19(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	$116.26(8)$	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{Cl} 2$	$112.34(4)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 2$	0.86	2.49	$3.322(4)$	164
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.70	$3.343(3)$	133
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1$	0.86	2.44	$3.276(4)$	165
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.86	2.52	$3.325(3)$	157

Symmetry codes: (i) $x-1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Dr Shu-Hua Zhang for helpful discussions and acknowledge funding from the National Natural Science Foundation of China (No. 20701010), the Natural Science Foundation of Guangxi Province (No. 0728094) and the Science and Technology Project of the Department of Education of Jiangxi Province [No. (2007)348].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2449).

References

Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. \& Nikolov, G. S. (1999). Polyhedron, 18, 1661-1668.
Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Cai, X.-W., Zhao, Y.-Y. \& Han, G.-F. (2008). Acta Cryst. E64, m1012.
Cini, R., Tamasi, G., Defazio, S. \& Hursthouse, M. B. (2007). J. Inorg. Biochem. 101, 1140-1152.
Dea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. \& Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.

Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M.-D., Novaković, S. B., Kaluderović, G. N. \& Kozłowski, H. (2006). J. Inorg. Biochem. 100, 1568-1574.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shen, L., Zhang, Y., Wang, A., Sieber-McMaster, E., Chen, X., Pelton, P., Xu, J. Z., Yang, M., Zhu, P., Zhou, L., Reuman, M., Hu, Z., Russell, R., Gibbs, A. C., Ross, H., Demarest, K., Murray, W. V. \& Kuo, G.-H. (2008). Bioorg. Med. Chem. 16, 3321-3341.

supplementary materials

Bis(2-amino-4-methyl-1,3-thiazole- κN^{3})dichloridocadmium(II)

L.-J. Zhang, X.-C. Shen and H. Liang

Comment

As one of the important S, N -containing-heterocycles, the 1,3-thiazole have often been regarded as a kind of pharmaceutical intermediates and constituents of many biomolecules. Higher pharmacological activities of metal-thiazole complexes than those of thiazole ligands themselves were found, which may depend on their crystal and molecular structures (Bolos et al. 1999; Miodragović et al. 2006; Cini et al. 2007; Dea et al. 2008; Shen et al. 2008). For 2-amino-5-methyl-1,3-thiazole (amtz), however, only one Cu-containing coordination complex with definite crystal structure was reported (Bolos et al. 1999). Herein, our initial goal of this research is to obtain the single crystal using 2-amino-4-thiazole acetic acid (atac) as ligand. When the reaction using the raw materials such as atac and cadmium chloride hydrate $\left[\mathrm{CdCl}_{2} \cdot 2 \cdot 5\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ in ethanol-water mixed solvents was carried out under solvothermal condition, however, atac was decarboxylized and then turn into amtz which may bind to CdCl_{2} to construct the title complex.

Fig. 1 displays the molecular structure of the title compound. The $\mathrm{Cd}^{\mathrm{II}}$ atom is coordinated by two chloride anions and two N atoms of thiazole rings from two amtz ligands in a slightly distorted tetrahedral coordination geometry (Table 1) (Cai et al. 2008). In the crystal structure, the intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 2) stabilize the molecular conformation, and the molecules are interconnected into a two-dimensional network structure via both the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and weak $\mathrm{S} \cdots \mathrm{Cl}$ interactions [3.533 (2) \AA]. In the crystal packing diagrams, one-dimensional zigzag chains viewed along the a axis and two-dimensional network structures viewed along the c axis can be found in Fig. 2 and in Fig. 3, respectively.

Experimental

2-Amino-4-thiazole acetic acid $(0.316 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{CdCl}_{2} .2 .5 \mathrm{H}_{2} \mathrm{O}(0.457 \mathrm{~g}, 2 \mathrm{mmol})$ were added into 15 ml ethanol-water (1:1 volume ratio) mixed solvents and stirred for 30 min . The mixture was transferred into a Teflon-lined stainless steel vessel (25 ml). The autoclave was sealed and heated at 383 K for two days, and then autoclave was allowed to cool to room temperature in air. After isolated by filtration, the filtrate was left to stand at room temperature about one week. The brown-yellow block single crystals suitable for X-ray diffraction were obtained with the reaction yield of 30% (based on cadmium).

Refinement

All H atoms bonded to C or N atoms were placed in geometrically calculated positions $(\mathrm{N}-\mathrm{H}, 0.86 \AA ; \mathrm{C}-\mathrm{H}, 0.93-0.96$
\AA) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The crystal packing of the title compound viewed along the a axis in one-dimensional zigzag chain form via both the intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and weak $\mathrm{S} \cdots \mathrm{Cl}$ interactions which are shown by dashed lines. The intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and all hydrogen atoms not involved in hydrogen bonding were omitted for clarity.

Bis(2-amino-4-methyl-1,3-thiazole-к $\boldsymbol{N}^{\mathbf{3}}$)dichloridocadmium(II)

Crystal data

$\left[\mathrm{CdCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{~S}\right)_{2}\right]$
$M_{r}=411.67$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=8.7100(17) \AA$
$b=13.190(3) \AA$
$c=12.740(3) \AA$
$\beta=95.19(3)^{\circ}$
$V=1457.6(6) \AA^{3}$
$Z=4$
$F_{000}=808$
$D_{\mathrm{x}}=1.885 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2595 reflections
$\theta=2.2-25.1^{\circ}$
$\mu=2.14 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, brown-yellow
$0.40 \times 0.25 \times 0.23 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite

2595 independent reflections
2113 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.442, T_{\text {max }}=0.612$
7630 measured reflections

$$
\begin{aligned}
& \theta_{\max }=25.1^{\circ} \\
& \theta_{\min }=2.2^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-15 \rightarrow 15 \\
& l=-15 \rightarrow 8
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0309 P)^{2}+0.4982 P\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.39$ e \AA^{-3}
Extinction correction: none

Special details

Experimental. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3431s, 3861s, 3305s, 3205ms, 3133w, 3100w, 2978w, 2947w, 2913w, 2713w, 2346w, 1621vs, 1561 m , $1506 \mathrm{~s}, 1438 \mathrm{~ms}, 1380 \mathrm{~ms}, 1357 \mathrm{~s}, 1147 \mathrm{~m}, 1112 \mathrm{~s}, 1033 \mathrm{~m}, 843 \mathrm{w}, 738 \mathrm{~m}, 703 \mathrm{~m}, 637 \mathrm{~m}, 606 \mathrm{~m}, 478 \mathrm{~m}$.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cd1	$0.79522(3)$	$0.902858(19)$	$0.78981(2)$	$0.04161(10)$
C1	$0.6219(4)$	$0.7247(3)$	$0.6506(3)$	$0.0454(9)$
C2	$0.8598(4)$	$0.7492(3)$	$0.6053(3)$	$0.0468(9)$
C3	$0.4937(4)$	$1.0397(3)$	$0.7472(3)$	$0.0510(9)$
C4	$0.6202(4)$	$0.6597(3)$	$0.5703(3)$	$0.0535(10)$
H4	0.5368	0.6187	0.5480	0.064^{*}
C5	$0.6514(5)$	$1.0670(3)$	$0.6215(3)$	$0.0621(11)$
C6	$0.5336(7)$	$1.1274(4)$	$0.5873(4)$	$0.0879(16)$
H6	0.5319	1.1667	0.5267	0.105^{*}

C7	$0.7954(6)$	$1.0484(4)$	$0.5704(4)$	$0.0891(16)$
H7A	0.7925	1.0860	0.5057	0.134^{*}
H7B	0.8043	0.9774	0.5557	0.134^{*}
H7C	0.8824	1.0698	0.6167	0.134^{*}
C8	$0.4931(4)$	$0.7448(3)$	$0.7171(3)$	$0.0659(12)$
H8A	0.4101	0.6985	0.6983	0.099^{*}
H8B	0.4573	0.8132	0.7058	0.099^{*}
H8C	0.5288	0.7359	0.7900	0.099^{*}
C11	$1.06487(10)$	$0.94872(8)$	$0.79854(9)$	$0.0612(3)$
Cl2	$0.71199(11)$	$0.86235(8)$	$0.96262(7)$	$0.0551(3)$
N1	$0.6277(3)$	$1.0170(2)$	$0.7149(2)$	$0.0443(7)$
N2	$0.7612(3)$	$0.7769(2)$	$0.6713(2)$	$0.0427(7)$
N3	$0.4407(3)$	$1.0036(3)$	$0.8341(3)$	$0.0649(9)$
H3A	0.4957	0.9620	0.8735	0.078^{*}
H3B	0.3512	1.0216	0.8509	0.078^{*}
N4	$1.0026(4)$	$0.7866(3)$	$0.6046(3)$	$0.0710(11)$
H4A	1.0348	0.8321	0.6497	0.085^{*}
H4B	1.0621	0.7651	0.5591	0.085^{*}
S1	$0.38830(17)$	$1.12403(11)$	$0.66679(12)$	$0.0917(4)$
S2	$0.79042(12)$	$0.66122(8)$	$0.51342(8)$	$0.0607(3)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	$0.03346(15)$	$0.04928(17)$	$0.04276(17)$	$-0.00234(11)$	$0.00714(11)$	$-0.00173(12)$
C1	$0.041(2)$	$0.041(2)$	$0.052(2)$	$-0.0037(16)$	$-0.0011(17)$	$0.0042(18)$
C2	$0.050(2)$	$0.043(2)$	$0.048(2)$	$-0.0025(17)$	$0.0102(17)$	$-0.0039(17)$
C3	$0.043(2)$	$0.047(2)$	$0.062(3)$	$0.0040(17)$	$-0.0009(19)$	$-0.0053(19)$
C4	$0.048(2)$	$0.048(2)$	$0.062(3)$	$-0.0031(18)$	$-0.0063(19)$	$-0.007(2)$
C5	$0.080(3)$	$0.049(2)$	$0.056(3)$	$-0.008(2)$	$0.002(2)$	$0.012(2)$
C6	$0.118(4)$	$0.069(3)$	$0.072(3)$	$0.009(3)$	$-0.013(3)$	$0.030(3)$
C7	$0.104(4)$	$0.099(4)$	$0.070(3)$	$-0.008(3)$	$0.034(3)$	$0.026(3)$
C8	$0.045(2)$	$0.075(3)$	$0.079(3)$	$-0.014(2)$	$0.015(2)$	$-0.011(2)$
C11	$0.0355(5)$	$0.0727(7)$	$0.0757(7)$	$-0.0109(5)$	$0.0062(5)$	$-0.0115(6)$
C12	$0.0497(5)$	$0.0708(6)$	$0.0466(5)$	$0.0022(5)$	$0.0140(4)$	$0.0077(5)$
N1	$0.0445(17)$	$0.0412(17)$	$0.0470(18)$	$-0.0030(14)$	$0.0030(14)$	$0.0039(14)$
N2	$0.0429(16)$	$0.0425(16)$	$0.0436(16)$	$-0.0034(13)$	$0.0084(13)$	$-0.0036(14)$
N3	$0.0409(18)$	$0.083(2)$	$0.073(2)$	$0.0146(17)$	$0.0172(17)$	$0.008(2)$
N4	$0.059(2)$	$0.078(2)$	$0.081(3)$	$-0.0172(19)$	$0.0366(19)$	$-0.028(2)$
S1	$0.0823(9)$	$0.0895(9)$	$0.1004(11)$	$0.0353(7)$	$-0.0071(8)$	$0.0189(8)$
S2	$0.0642(7)$	$0.0591(6)$	$0.0589(7)$	$0.0000(5)$	$0.0061(5)$	$-0.0178(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cd} 1-\mathrm{N} 2$	$2.246(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.340(6)$
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.248(3)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.392(5)$
$\mathrm{Cd} 1-\mathrm{Cl} 1$	$2.4181(10)$	$\mathrm{C} 5-\mathrm{C} 7$	$1.485(6)$
$\mathrm{Cd} 1-\mathrm{Cl} 2$	$2.4387(11)$	$\mathrm{C} 6-\mathrm{S} 1$	$1.691(6)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.333(5)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300

sup-4

supplementary materials

$\mathrm{C} 1-\mathrm{N} 2$	$1.399(4)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.490(5)$
$\mathrm{C} 2-\mathrm{N} 2$	$1.308(4)$
$\mathrm{C} 2-\mathrm{N} 4$	$1.338(4)$
$\mathrm{C} 2-\mathrm{S} 2$	$1.718(4)$
$\mathrm{C} 3-\mathrm{N} 1$	$1.308(4)$
$\mathrm{C} 3-\mathrm{N} 3$	$1.326(5)$
$\mathrm{C} 3-\mathrm{S} 1$	$1.720(4)$
$\mathrm{C} 4-\mathrm{S} 2$	$1.708(4)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{~N} 2-\mathrm{Cd} 1-\mathrm{N} 1$	$99.70(11)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{Cl} 1$	$106.53(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 1$	$116.26(8)$
$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{C} 2$	$114.38(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{Cl} 2$	$107.19(8)$
$\mathrm{C} 11-\mathrm{Cd} 1-\mathrm{Cl} 2$	$112.34(4)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{N} 2$	$114.2(3)$
$\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 8$	$126.5(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 8$	$119.3(3)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 4$	$124.4(3)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$	$114.6(3)$
$\mathrm{N} 4-\mathrm{C} 2-\mathrm{S} 2$	$121.0(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3$	$124.6(3)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{S} 1$	$113.8(3)$
$\mathrm{N} 3-\mathrm{C} 3-\mathrm{S} 1$	$121.5(3)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{S} 2$	$111.6(3)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{H} 4$	124.2
$\mathrm{~S} 2-\mathrm{C} 4-\mathrm{H} 4$	124.2
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 1$	$113.0(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7$	$127.4(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7$	$119.5(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$112.5(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	123.8
$\mathrm{~S} 1-\mathrm{C} 6-\mathrm{H} 6$	
$\mathrm{C} 5-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	

C7-H7A	0.9600
C7-H7B	0.9600
C7-H7C	0.9600
C8-H8A	0.9600
C8-H8B	0.9600
C8-H8C	0.9600
N3-H3A	0.8600
N3-H3B	0.8600
N4-H4A	0.8600
N4-H4B	0.8600
C5-C7-H7B	109.5
H7A-C7-H7B	109.5
C5-C7-H7C	109.5
H7A-C7-H7C	109.5
H7B-C7-H7C	109.5
C1-C8-H8A	109.5
C1-C8-H8B	109.5
H8A-C8-H8B	109.5
C1-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C3-N1-C5	$111.5(3)$
C3-N1-Cd1	$125.7(3)$
C5-N1-Cd1	$122.7(3)$
C2-N2-C1	$110.4(3)$
C2-N2-Cd1	$125.8(2)$
C1-N2-Cd1	$123.4(2)$
C3-N3-H3A	120.0
C3-N3-H3B	120.0
H3A-N3-H3B	120.0
C2-N4-H4A	120.0
C2-N4-H4B	120.0
H4A-N4-H4B	120.0
C6-S1-C3	$89.2(2)$
C4-S2-C2	$89.09(18)$
C5 43	

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3—H3A $\cdots \mathrm{Cl} 2$	0.86	2.49	$3.322(4)$	164
N3—H3B $\cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.86	2.70	$3.343(3)$	133
N4—H4A $\cdots \mathrm{Cl1}$	0.86	2.44	$3.276(4)$	165
N4—H4B $\cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.86	2.52	$3.325(3)$	157
Symmetry codes: (i) $x-1, y, z$; (ii) $x+1 / 2,-y+3 / 2, z-1 / 2$				

supplementary materials

Fig. 1

Fig. 2

Fig. 3

